

Domain & Range of Function

▼ Find the domain of given functions

Level 1: Simple Denominators

$$1. f(x) = \frac{10}{x-5}$$

$$2. f(x) = \frac{3x+7}{2x-8}$$

$$3. f(x) = \frac{x^2-4}{x}$$

Level 2: Simple Square Roots

$$1. g(x) = \sqrt{x-1}$$

$$2. g(x) = \sqrt{2x+12}$$

$$3. g(x) = \sqrt{10-x}$$

Level 3: Quadratic Denominators

$$1. h(x) = \frac{x+1}{x^2-16}$$

$$2. h(x) = \frac{1}{x^2-5x}$$

$$3. h(x) = \frac{2x}{x^2+4x+3}$$

Level 4: Combining Square Roots and Denominators

$$1. k(x) = \frac{1}{\sqrt{x-6}}$$

$$2. k(x) = \frac{\sqrt{x+2}}{x-3}$$

$$3. k(x) = \frac{x-5}{\sqrt{20-4x}}$$

Level 5: Quadratic Expressions Inside Square Roots

$$1. p(x) = \sqrt{x^2 - 9}$$

$$2. p(x) = \sqrt{x^2 - 7x + 10}$$

3. $p(x) = \sqrt{25 - x^2}$

Level 6: Domains Involving Modulus (Notion/LaTeX Format)

Problems

1. $f(x) = \frac{5}{|x|-3}$
2. $g(x) = \frac{x-1}{|2x+8|}$
3. $h(x) = \sqrt{|x-1|}$
4. $k(x) = \sqrt{|x|-7}$
5. $m(x) = \frac{1}{\sqrt{9-|x|}}$

Answer Key

1. **Answer:** $(-\infty, 5) \cup (5, \infty)$
2. **Answer:** $(-\infty, 4) \cup (4, \infty)$
3. **Answer:** $(-\infty, 0) \cup (0, \infty)$
4. **Answer:** $[1, \infty)$
5. **Answer:** $[-6, \infty)$
6. **Answer:** $(-\infty, 10]$
7. **Answer:** $(-\infty, -4) \cup (-4, 4) \cup (4, \infty)$
8. **Answer:** $(-\infty, 0) \cup (0, 5) \cup (5, \infty)$
9. **Answer:** $(-\infty, -3) \cup (-3, -1) \cup (-1, \infty)$
10. **Answer:** $(6, \infty)$
11. **Answer:** $[-2, 3) \cup (3, \infty)$
12. **Answer:** $(-\infty, 5)$
13. **Answer:** $(-\infty, -3] \cup [3, \infty)$
14. **Answer:** $(-\infty, 2] \cup [5, \infty)$
15. **Answer:** $[-5, 5]$

Answer Key (Modulus Set)

1. **Answer:** $(-\infty, -3) \cup (-3, 3) \cup (3, \infty)$
2. **Answer:** $(-\infty, -4) \cup (-4, \infty)$
3. **Answer:** $(-\infty, \infty)$
4. **Answer:** $(-\infty, -7] \cup [7, \infty)$
5. **Answer:** $(-9, 9)$

▼ Part-2

Problem Set

1. $f(x) = x^2 - 4$
2. $g(x) = \sqrt{x-3} + 1$
3. $h(x) = \frac{5}{x+2}$
4. $k(x) = 8 - x^2$
5. $m(x) = |x+2| - 3$
6. $p(x) = \frac{2x+1}{x-4}$
7. $q(x) = \sqrt{25 - x^2}$
8. $s(x) = 4 - \sqrt{x+5}$
9. $t(x) = \frac{6}{x^2+3}$

Answer Key

1. **Function:** $f(x) = x^2 - 4$
 - **Domain:** $(-\infty, \infty)$
 - *Reasoning:* It's a polynomial with no denominators or roots, so there are no restrictions on the input x .
 - **Range:** $[-4, \infty)$
 - *Reasoning:* The term x^2 has a minimum value of 0. Therefore, the minimum value of the function is $0 - 4 = -4$.
2. **Function:** $g(x) = \sqrt{x-3} + 1$
 - **Domain:** $[3, \infty)$

- *Reasoning:* The expression inside the square root must be non-negative: $x-3 \geq 0 \implies x \geq 3$.
- **Range:** $[1, \infty)$
 - *Reasoning:* The output of $\sqrt{x-3}$ is always ≥ 0 . Therefore, the minimum output of the entire function is $0 + 1 = 1$.

3. **Function:** $h(x) = \frac{5}{x+2}$

- **Domain:** $(-\infty, -2) \cup (-2, \infty)$
 - *Reasoning:* The denominator cannot be zero: $x+2 \neq 0 \implies x \neq -2$.
- **Range:** $(-\infty, 0) \cup (0, \infty)$
 - *Reasoning:* A fraction can only be zero if its numerator is zero. Since the numerator is 5, this fraction can never equal 0, but it can produce any other non-zero number.

4. **Function:** $k(x) = 8 - x^2$

- **Domain:** $(-\infty, \infty)$
 - *Reasoning:* It's a polynomial with no restrictions.
- **Range:** $(-\infty, 8]$
 - *Reasoning:* The term x^2 is always ≥ 0 . So, $-x^2$ is always ≤ 0 . The maximum value of $-x^2$ is 0, making the function's maximum value $8 - 0 = 8$.

5. **Function:** $m(x) = |x+2| - 3$

- **Domain:** $(-\infty, \infty)$
 - *Reasoning:* The absolute value function accepts any real number input.
- **Range:** $[-3, \infty)$
 - *Reasoning:* The term $|x+2|$ has a minimum output of 0. Therefore, the minimum output of the entire function is $0 - 3 = -3$.

6. **Function:** $p(x) = \frac{2x+1}{x-4}$

- **Domain:** $(-\infty, 4) \cup (4, \infty)$

- *Reasoning:* The denominator cannot be zero: $x-4 \neq 0 \implies x \neq 4$.
- **Range:** $(-\infty, 2) \cup (2, \infty)$
 - *Reasoning:* Using the inverse method, solving $y = \frac{2x+1}{x-4}$ for x gives $x = \frac{4y+1}{y-2}$. The denominator of this inverse shows that $y \neq 2$.

7. **Function:** $q(x) = \sqrt{25 - x^2}$

- **Domain:** $[-5, 5]$
 - *Reasoning:* We need $25 - x^2 \geq 0 \implies 25 \geq x^2 \implies -5 \leq x \leq 5$.
- **Range:** \mathbb{R}
 - *Reasoning:* The function represents the top half of a circle with radius 5. The minimum output is 0 (when $x=\pm 5$). The maximum output is 5 (when $x=0$).

8. **Function:** $s(x) = 4 - \sqrt{x+5}$

- **Domain:** $[-5, \infty)$
 - *Reasoning:* We need $x+5 \geq 0 \implies x \geq -5$.
- **Range:** $(-\infty, 4]$
 - *Reasoning:* The term $\sqrt{x+5}$ is always ≥ 0 . So, $4 - \sqrt{x+5}$ is always ≤ 0 . The maximum value of this part is 0. Thus, the function's maximum value is $4 - 0 = 4$.

1. **Function:** $t(x) = \frac{6}{x^2+3}$

- **Domain:** $(-\infty, \infty)$
 - *Reasoning:* The denominator x^2+3 is always positive (minimum value is 3), so it can never be zero.
- **Range:** $(0, 2]$
 - *Reasoning:* The denominator x^2+3 has a minimum value of 3 (when $x=0$). This creates the fraction's maximum value: $6/3 = 2$. As x approaches $\pm\infty$, the denominator becomes infinitely large, making the fraction approach, but never reach,

$0.1pm\backslash infty$, the denominator becomes infinitely large, making the fraction approach, but never reach, 0.