

CIRCLES EXEMPLAR QUESTIONS [13-11-2025]

- Find the equation of the circle which touches the both axes in first quadrant and whose radius is a .
- Show that the point (x, y) given by $x = \frac{2at}{1+t^2}$ and $y = \frac{a(1-t^2)}{1+t^2}$ lies on a circle for all real values of t such that $-1 \leq t \leq 1$ where a is any given real numbers.
- If a circle passes through the point $(0,0)$, $(a, 0)$, $(0, b)$ then find the coordinates of its centre.
- Find the equation of the circle which touches x -axis and whose centre is $(1, 2)$.
- If the lines $3x - 4y + 4 = 0$ and $6x - 8y - 7 = 0$ are tangents to a circle, then find the radius of the circle.
- Find the equation of a circle which touches both the axes and the line $3x - 4y + 8 = 0$ and lies in the third quadrant.
- If one end of a diameter of the circle $x^2 + y^2 - 4x - 6y + 11 = 0$ is $(3, 4)$, then find the coordinate of the other end of the diameter.
- Find the equation of the circle having $(1, -2)$ as its centre and passing through $3x + y = 14$, $2x + 5y = 18$
- If the line $y = \sqrt{3}x + k$ touches the circle $x^2 + y^2 = 16$, then find the value of k .
- Find the equation of a circle concentric with the circle $x^2 + y^2 - 6x + 12y + 15 = 0$ and has double of its area.
- If the lines $2x - 3y = 5$ and $3x - 4y = 7$ are the diameters of a circle of area 154 square units, then obtain the equation of the circle.
- Find the equation of the circle which passes through the points $(2, 3)$ and $(4, 5)$ and the centre lies on the straight line $y - 4x + 3 = 0$.
- Find the equation of a circle whose centre is $(3, -1)$ and which cuts off a chord of length 6 units on the line $2x - 5y + 18 = 0$.
- Find the equation of a circle of radius 5 which is touching another circle $x^2 + y^2 - 2x - 4y - 20 = 0$ at $(5, 5)$.
- Find the equation of a circle passing through the point $(7, 3)$ having radius 3 units and whose centre lies on the line $y = x - 1$.
- The line $x + 3y = 0$ is a diameter of the circle $x^2 + y^2 + 6x + 2y = 0$.
- The shortest distance from the point $(2, -7)$ to the circle $x^2 + y^2 - 14x - 10y - 151 = 0$ is equal to 5.
- If the line $lx + my = 1$ is a tangent to the circle $x^2 + y^2 = a^2$, then the point (l, m) lies on a circle.
- The point $(1, 2)$ lies inside the circle $x^2 + y^2 - 2x + 6y + 1 = 0$.
- The equation of the circle having centre at $(3, -4)$ and touching the line $5x + 12y - 12 = 0$ is _____.
- The equation of the circle circumscribing the triangle whose sides are the lines $y = x + 2$, $3y = 4x$, $2y = 3x$ is _____.
- The area of the circle centred at $(1, 2)$ and passing through $(4, 6)$ is
(A) 5π (B) 10π (C) 25π (D) none of these
- Equation of a circle which passes through $(3, 6)$ and touches the axes is

(A) $x^2 + y^2 + 6x + 6y + 3 = 0$ (B) $x^2 + y^2 - 6x - 6y - 9 = 0$

(C) $x^2 + y^2 - 6x - 6y + 9 = 0$ (D) none of these

24. Equation of the circle with centre on the y -axis and passing through the origin and the point $(2, 3)$ is

(A) $x^2 + y^2 + 13y = 0$ (B) $3x^2 + 3y^2 + 13x + 3 = 0$

(C) $6x^2 + 6y^2 - 13x = 0$ (D) $x^2 + y^2 + 13x + 3 = 0$

25. The equation of a circle with origin as centre and passing through the vertices of an equilateral triangle whose median is of length $3a$ is

(A) $x^2 + y^2 = 9a^2$ (B) $x^2 + y^2 = 16a^2$

(C) $x^2 + y^2 = 4a^2$ (D) $x^2 + y^2 = a^2$