

COMBINATIONS

1. How many different teams of 11 players can be chosen from 15 players?
2. If there are 12 persons in a party and if each two of them shake hands with each other, how many handshakes are possible?
3. How many chords can be drawn through 21 points on a circle?
4. From a class of 25 students, 4 are to be chosen for a competition. In how many ways can this be done?
5. In how many ways can 5 sportsmen be selected from a group of 10?
6. A bag contains 5 black and 6 red balls. Find the number of ways in which 2 black and 3 red balls can be selected.
7. Find the number of ways of selecting 9 balls from 6 red balls, 5 white balls and 4 blue balls if each selection consists of 3 balls of each colour.
8. How many different boat parties of 8 consisting of 5 boys and 3 girls can be made from 20 boys and 10 girls?
9. In how many ways can a student choose 5 courses out of 9 courses if 2 specific courses are compulsory for every student?
10. In how many ways can a cricket eleven be chosen out of a batch of 15 players, if
 - (i) there is no restriction on the selection?
 - (ii) a particular player is always chosen?
 - (iii) a particular player is never chosen?
11. In how many ways can a committee of 5 members be selected from 6 men and 5 ladies, consisting of 3 men and 2 ladies?
12. For the post of 5 teachers, there are 23 applicants. 2 posts are reserved for SC candidates and there are 7 SC candidates among the applicants. In how many ways can the selection be made?

1. Evaluate:

(i) ${}^{20}C_4$

(ii) ${}^{16}C_{13}$

(iii) ${}^{90}C_{88}$

(iv) ${}^{71}C_{71}$

(v) ${}^{n+1}C_n$

(vi) $\sum_{r=1}^6 {}^6C_r$

2. Verify that:

(i) ${}^{15}C_8 + {}^{15}C_9 - {}^{15}C_6 - {}^{15}C_7 = 0$

(ii) ${}^{10}C_4 + {}^{10}C_3 = {}^{11}C_4$

3. (i) If ${}^nC_7 = {}^nC_5$, find n .

(ii) If ${}^nC_{14} = {}^nC_{16}$, find ${}^nC_{28}$.

(iii) If ${}^nC_{16} = {}^nC_{14}$, find ${}^nC_{27}$.

4. (i) If ${}^{20}C_r = {}^{20}C_{r+6}$, find r .

(ii) If ${}^{18}C_r = {}^{18}C_{r+2}$, find rC_5 .

5. If ${}^nC_{r-1} = {}^nC_{3r}$, find r .

6. If ${}^{2n}C_3 : {}^nC_3 = 12 : 1$, find n .

7. If ${}^{15}C_r : {}^{15}C_{r-1} = 11 : 5$, find r .

8. If ${}^nP_r = 840$ and ${}^nC_r = 35$, find the value of r .

9. If ${}^nC_{r-1} = 36$, ${}^nC_r = 84$ and ${}^nC_{r+1} = 126$, find n and r .

10. If ${}^{n+1}C_{r+1} : {}^nC_r = 11 : 6$ and ${}^nC_r : {}^{n-1}C_{r-1} = 6 : 3$, find n and r .

ANSWERS:

1. (i) 4845 (ii) 560 (iii) 4005 (iv) 1 (v) $n+1$ (vi) 63

3. (i) $n = 12$ (ii) 435 (iii) 4060 4. (i) $r = 7$ (ii) 56

5. $r = \frac{1}{4}(n+1)$ 6. $n = 5$ 7. $r = 5$ 8. $r = 4$ 9. $n = 9, r = 3$

10. $n = 10, r = 5$ 11. 1365 12. 66 13. 210 14. 12650