

the XY-plane. Obviously $PL \parallel RN \parallel QM$ and feet of these perpendiculars lie in a XY-plane. The points L, M and N will lie on a line which is the intersection of the plane containing PL, RN and QM with the XY-plane. Through the point R draw a line ST parallel to the line LM. Line ST will intersect the line LP externally at the point S and the line MQ at T, as shown in Fig 12.5.

Also note that quadrilaterals LNRS and NMTR are parallelograms.

The triangles PSR and QTR are similar. Therefore,

$$\frac{m}{n} = \frac{PR}{QR} = \frac{SP}{QT} = \frac{SL - PL}{QM - TM} = \frac{NR - PL}{QM - NR} = \frac{z - z_1}{z_2 - z}$$

This implies $z = \frac{mz_2 + nz_1}{m+n}$

Similarly, by drawing perpendiculars to the XZ and YZ-planes, we get

$$y = \frac{my_2 + ny_1}{m+n} \text{ and } x = \frac{mx_2 + nx_1}{m+n}$$

Hence, the coordinates of the point R which divides the line segment joining two points P (x_1, y_1, z_1) and Q (x_2, y_2, z_2) internally in the ratio $m : n$ are

$$\left(\frac{mx_2 + nx_1}{m+n}, \frac{my_2 + ny_1}{m+n}, \frac{mz_2 + nz_1}{m+n} \right)$$

If the point R divides PQ externally in the ratio $m : n$, then its coordinates are obtained by replacing n by $-n$ so that coordinates of point R will be

$$\left(\frac{mx_2 - nx_1}{m-n}, \frac{my_2 - ny_1}{m-n}, \frac{mz_2 - nz_1}{m-n} \right)$$

Case 1 Coordinates of the mid-point: In case R is the mid-point of PQ, then

$$m : n = 1 : 1 \text{ so that } x = \frac{x_1 + x_2}{2}, y = \frac{y_1 + y_2}{2} \text{ and } z = \frac{z_1 + z_2}{2}.$$

These are the coordinates of the mid point of the segment joining P (x_1, y_1, z_1) and Q (x_2, y_2, z_2) .

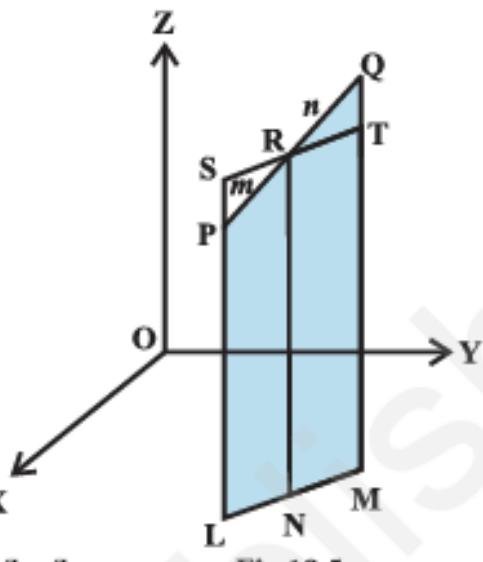


Fig 12.5

EXERCISE 12.3

- Find the coordinates of the point which divides the line segment joining the points $(-2, 3, 5)$ and $(1, -4, 6)$ in the ratio (i) $2 : 3$ internally, (ii) $2 : 3$ externally.
- Given that $P(3, 2, -4)$, $Q(5, 4, -6)$ and $R(9, 8, -10)$ are collinear. Find the ratio in which Q divides PR .
- Find the ratio in which the YZ -plane divides the line segment formed by joining the points $(-2, 4, 7)$ and $(3, -5, 8)$.
- Using section formula, show that the points $A(2, -3, 4)$, $B(-1, 2, 1)$ and $C\left(0, \frac{1}{3}, 2\right)$ are collinear.
- Find the coordinates of the points which trisect the line segment joining the points $P(4, 2, -6)$ and $Q(10, -16, 6)$.